## DEPARTMENT OF THE ARMY TECHNICAL MANUAL

Transportability Guidance<br>TRUCK, TRACTOR, 10-TON, 6X6, M123, M123C, M123D, AND M123A1C

## Headquarters, Department of the Army, Washington, D;C. 24 February 1967

|  | Paragraph | Page |
| :---: | :---: | :---: |
| Purpose . | 1 | 1 |
| Scope ....................................................... | 2 | 1 |
| Description.. | 3 | 1 |
| Modes of transport | 4 | 2 |
| Sectionalization... | 5 | 3 |
| Item characteristics and related data............... | 6 | 3 |

## 1. Purpose

This manual provides transportability guidance for movement of the Truck, Tractor, 10Ton, 6X6, M123, M123C, M123D, and M123AIC fig. 1).

## 2. Scope

a. The information contained in this manual covers significant transportability and safety considerations in the movement of the item by various modes of transport. Included are slide and end-elevation drawings (figs. 2] and 3) and characteristics of the item.
$b$. Users of this publication are encouraged to submit recommended changes and comments to improve the publication. Comments should be keyed to the specific page, paragraph, and line of: the text in which the change is recommended. Reasons will be provided for each comment to insure understanding and complete evaluation. Report all deficiencies in this manual on DA Form 1598 (Record of Comments on Publications). Comments should be forwarded direct to the Commanding Officer, U.S. Army Transportation

Engineering Agency, Military Traffic Management and Terminal Service, ATTN: MTT-TG, Fort Eustis, Va., 23604.

## 3. Description

The Truck, Tractor, M123 series, is a heavy duty vehicle designed primarily for use with a special purpose semitrailer in combat vehicle recovery operations. The M123 is equipped with a dual winch and a high-mounted fifth wheel, the M123C is equipped with a single winch and a low-mounted fifth wheel, the M123D is equipped with a dual winch and a low-mounted fifth wheel, and the M123A1C is equipped with a single winch and a lowmounted fifth wheel. The M123, M123C, and M123D trucks are powered by gasoline-driven engines, and the M123A1C truck is powered by a diesel engine. For the purpose of transportability guidance, all models are considered dimensionally similar. Where differences occur, each model is listed separately.

[^0]TAGO 7080A

## 4. Modes of Transport

(Figures in parentheses throughout this manual are metric equivalents.)
a. Shipment by Air.
(1) The item is not transportable by U.S. Army aircraft.
(2) Based on a typical logistical mission of 2,500 nautical miles ( 4630 km ), one way, the item is within the dimensional and weight capabilities of the $\mathrm{C}-130 \mathrm{E}$ and the C-133- and C-141 series U.S. Air Force aircraft.
(3) Based on a typical logistical mission of 1,000 nautical miles ( 1852 km ), one way, the item is within the dimensional and weight capabilities of the C-124-, C-130-, C-133-, and C-141 series U.S. Air Force aircraft.

Caution: Sectionalization of the item will be required prior to loading in the C-130-series aircraft.

Note. The maximum U. S. Air Force aircraft cargo weight and rang capabilities are based on the following conditions:

Standard day conditions
Sea level operating conditions
Hard-surfaced runways
No weather alternate required
No wind conditions
Fuel reserve
Constant cruising altitude
In the event one or more of these operating conditions are changed, the maximum cargo load and/or range may be affected.
b. Shipment by Highway.
(1) On road. The item is transportable by highway under its own power. The width of the item exceeds the legal limitations for highway movement in CONUS and the recommended highway limitations in
oversea areas. Special permits will be required in CONUS, and special routing may be required overseas. Se figure 4 for turning characteristics.
(2) Off road: soils trafficability data. The vehicle cone index ( VCl ) is a number which tests have proven can be related to the characteristics of a particular vehicle. This number, when used in connection with the rating cone index (of the soil), can forecast the ability of that vehicle to repeatedly cross fine-grained soil, and sands with fines poorly drained. The rating cone index is obtained by use of the cone penetrometer and its associated equipment. See TB ENG 37 for use of the equipment in the field and for interpretation of index numbers.
Truck, Tractor, 10-Ton, XB6, M123 (typical), at curb weight, plus personnel$29,340 \mathrm{lb}(13308.6 \mathrm{~kg})-----\mathrm{VCl} 49$
c. Shipment by Rail. The item loaded on a railroad flatcar is transportable within the "Outline Diagram for Single Loads, Without End Overhang, on Open Top Cars"* for shipments within CONUS. In countries complying with the Berne International Rail Interchange Agreement, the item is transportable by rail but exceeds the height limitations, and verification of line clearances will be required. After removal of spare wheel and spare wheel davit, the item can be moved without limitation. See figures 5, 6, and 7 and table 1 for information regarding blocking and restraining on railroad flatcars.
d. Shipment by Water. The item is transportable by inland waterway cargo carriers and lighters of adequate capacity. It can be shipped by Mariner, Victory, and Liberty class seagoing vessels, subject to the following limitations:

| Hatch size |  |  |
| :---: | :---: | :---: |
| adequate | Hatch boom <br> adequate | Hatches requiring <br> terminal crane |


*Detailed information available in Railway Line Clearance publication.
AGO 7089A

## 5. Sectionalization

The overall height of 112.0 inches ( 2.85 m ) can be reduced to 93.0 inches $(2.36 \mathrm{~m})$ by lowering the windshield and by removing the floodlight, spare wheel, spare wheel davit, trolley tracks, level wind trolleys, hydraulic control handle, and operator's cab cover. Secure the removed equipment to the truck body forward of the fifth wheel. The overall length of 289.0 inches ( 7.34 m ) can be reduced to 285.0 inches ( 7.24
m) by removing the rear tow pintle. No special tools are required, and the operations are within the capabilities of organizational maintenance personnel. See figure 8 for sectionalization diagram.

## 6. Item Characteristics and Related Data

(Data based on item in unloaded condition.) Nomenclature-Truck, Tractor, 10-Ton, 6X6, M123, M123C, M123D, and M123A1C.


AGO 7089A


AGO 7089A


Figure 1. Truck, Tractor, 10-Ton, 6X6, M123.


Figure 2. Side elevation.


Figure 3. End elevation


Figure 4. Turning characteristics diagram. Truck, Tractor, 10 Ton, 6X6, M123.


AGO 7089A
Figure 5. Blocking and restraining diagram

## Table 1. Bill of Material and Instructions for Blocking and Restraining Truck, Tractor, 10-Ton, 6 X 6, M123, on Railroad Flatcars With Wooden Floors

| Lumber | Linear feet |
| :---: | :---: |
| 2-in. X 4-in ........................................ | 64 |
| 2-in. $\times 6$-in. | 18 |
| 6-in. X 8-in. ..................................... | 24 |

## Nails

12d (4-in.) ..................................................
No. required
46
20d (4-in.)
88
40d (6-in.)

## inear feet

64
24

Lumber: Douglas-fir or comparable lumber with straight grain and free from material defects, Fed Spec MM-L-651.
Nails: Common, cement-coated, Fed Spec FF-N-106.

## Bill of Material

Wire, No, 8 gage, black, annealed
Rope, steel wire, $1 / 2$-in.-dia. (not required when 70 ft (approx)
No. 8 gage wire is used exclusively.

Chips, 1/2-in
Thimbles, std, 1/2-in. (open-type) ......
Waterproof paper or burlap. $\qquad$

20 (when steel wire rope is used)
4 (when steel wire rope is used)
As required

Rope: 1/2-in., 6 X 9, IWRC steel cable, Fed Spec RR-W-410.
Wire: No. 8 gage, annealed, black, Fed Spec QQ-W-461.
Clips: U-bolt, Crosby, heavy-duty, or equal.
Item No. of pieces Application

A ....................... Brake wheel clearance. Six-inch clearance required
E 4 each unit...........Eight strands of No. 8 gage, black, annealed wire. in back of, on both sides of, and above brake wheel, Attach to the shackles located at each end of the with 4 inches required below the wheel.
B 12...................
Block (skech 1, flg. 6), 6-in. X 8-in X 24-in. Locate $45^{\circ}$ portion of block against front and rear of front wheels, in front of inside and outside intermediate wheels, and in back of inside and outside rear wheels. Nail heel of the block to the car floor with three 40d nails, and toenail that portion of the block under the tire to the car floor with two 40d nails before items C and D are applied.
C 1 each item D... Suitable material, such as waterproof paper or burlap, etc. Locate bottom portion under item D, the top portion to extend 2 inches above item D .
$\qquad$ Each to consist of one piece of $2-\mathrm{in}$. X 6 -in. X 36 -in. lumber and three pieces of 2 -in. $\mathrm{X} 4-\mathrm{in}$. $\times 36$-in. lumber (sketch 2, fig. 6). Nail one edge of the 2 -in. $\times 6$-in. $\times 36$-in. piece to the bottom 2 -in. $X$ 4 -in. $X 36$-in. piece with five 12 d nails. Then place against the tire and nail to the car floor through the $2-\mathrm{in}$. $\times 4$-in. $\times 36$-in. piece with four 20d nails. Nail the other two 2 -in. X 4 -in. X 36 -in. pieces to the one below in the same manner.

Attach to the shackles located at each end of the
unit and to stake pockets on the same side of the car. Metal fillers sufficient to provide a suitable radius must be used to protect the wire at stake pockets and applied so as to prevent dislodgement. Twist wires taut with a rod, bolt, or suitable length of $2-\mathrm{in}$. X $2-\mathrm{in}$. lumber and secure to preclude unwinding. (sketch 3 , fig. 6). Substitute, if desired, 1/2-in. IWRC steel cable, in a complete loop, and secure with four $1 / 2$-in. cable clips. Thimble must be used at the stake pocket to protect the cable and secured to the cable with one cable clip (sketch 4, fig. 6).
Each to consist of six strands of No. 8 gage, black, annealed wire. Pass through the spokes or holes in the front and rear wheels and through the car stake pockets (sketch 1, fig. 7). Wires should be attached to-the wheel above the midpoint and the two twisted wire tiedowns installed so they form an "X" across the face of the wheel. Twist taut with a rod, bolt, or suitable length of 2 -in. X 2 -in. lumber, and secure to preclude unwinding.

## General Notes

1. Load as shown is based on a flatcar 9 feet 2 inches wide (platform). Cars with wider platforms may be used.
2. All handbrakes will be applied with the hand levers wired or blocked. Gearshift levers for automatic or conventional transmissions must be placed and wire-tied in neutral position. Clutch pedal shall be secured in depressed position by wiring to floorboard plate, or by wiring a wood block to the pedal shaft beneath the floorboard.
3. When No. 8 gage wire is used for tiedown purposes, the wire is to be threaded In a continuous length until all the required number of strands are formed (one complete loop consists of two strands).
4. Tires will be inflated to 10 psi above highway operating pressures.
5. For further details, refer to Association of American Railroads (AAR) "Rules Governing the Loading of Commodities on Open Top Cars" and General Rules 4, 5, 9, 14, 16, 19A, and 19B therein.


## SKETCH:



SKETCH 2


SKETCH 3

Figure 6. Blocking detail diagram.


Figure 7. Wheel restraint detail


## SHIPPING DATA

WT, SEEPARAG
VOL. $\quad 1.748 .6 \mathrm{CUFT}$ (49.49 CUM)
AREA, 225.6 SQ FT (20.96 SQ M)


Figure 8. Sectionalization diagram.

By Order of the Secretary of the Army:

## Official:

HAROLD K. JOHNSON, General, United States Army,

KENNETH G. WICKHAM, Major General, United States Army, The Adjutant General.

Distribution:
Active Army:
DCSLOG (1)
CNGB (2)
CAR (2)
CMH (2)
CC-E (1)
CofEngrs (1)
TSG (1)
Dir/Trans, DCSLOG (5)
USAAVCOM (5)
USAMC (6)
USA CD Agcy (2)
USA GETA (2)
USCONARC (5)
ARADCOM (2)
ARADCOM Rgn (2)
OS Maj Comd (10)
MDW (2)
USASMC (2)
USAMEC (2)
USAWECOM (2)
Armies (5)
NG: State AG (3).
USAR: None.
For explanation of abbreviations used, see AR 320-50.


## The Metric System and Equivalents

## Linear Measure

1 centimeter $=10$ millimeters $=.39$ inch
1 decimeter $=10$ centimeters $=3.94$ inches
1 meter $=10$ decimeters $=39.37$ inches
1 dekameter $=10$ meters $=32.8$ feet
1 hectometer $=10$ dekameters $=328.08$ feet
1 kilometer $=10$ hectometers $=3,280.8$ feet

## Weights

1 centigram $=10$ milligrams $=.15$ grain
1 decigram $=10$ centigrams $=1.54$ grains
1 gram $=10$ decigram $=.035$ ounce
1 decagram = 10 grams = .35 ounce
1 hectogram $=10$ decagrams $=3.52$ ounces
1 kilogram $=10$ hectograms $=2.2$ pounds
1 quintal $=100$ kilograms $=220.46$ pounds
1 metric ton = 10 quintals $=1.1$ short tons

## Liquid Measure

1 centiliter $=10$ milliters $=.34 \mathrm{fl}$. ounce
1 deciliter $=10$ centiliters $=3.38 \mathrm{fl}$. ounces
1 liter $=10$ deciliters $=33.81 \mathrm{fl}$. ounces
1 dekaliter $=10$ liters $=2.64$ gallons
1 hectoliter $=10$ dekaliters $=26.42$ gallons
1 kiloliter $=10$ hectoliters $=264.18$ gallons

## Square Measure

1 sq. centimeter $=100$ sq. millimeters $=.155$ sq. inch
1 sq. decimeter $=100$ sq. centimeters $=15.5$ sq. inches
1 sq. meter $($ centare $)=100$ sq. decimeters $=10.76$ sq. feet
1 sq. dekameter $($ are $)=100$ sq. meters $=1,076.4$ sq. feet
1 sq. hectometer (hectare) $=100$ sq. dekameters $=2.47$ acres
1 sq. kilometer $=100$ sq. hectometers $=.386$ sq. mile

## Cubic Measure

1 cu . centimeter $=1000 \mathrm{cu}$. millimeters $=.06 \mathrm{cu}$. inch
1 cu . decimeter $=1000 \mathrm{cu}$. centimeters $=61.02 \mathrm{cu}$. inches
1 cu . meter $=1000 \mathrm{cu}$. decimeters $=35.31 \mathrm{cu}$. feet

## Approximate Conversion Factors

| Multiply by | To change | To | Multiply by |
| ---: | :--- | :--- | ---: |
|  |  |  |  |
| 2.540 | ounce-inches | Newton-meters | .007062 |
| .305 | centimeters | inches | .394 |
| .914 | meters | feet | 3.280 |
| 1.609 | meters | yards | 1.094 |
| 6.451 | kilometers | miles | .621 |
| .093 | square centimeters | square inches | .155 |
| .836 | square meters | square feet | 10.764 |
| 2.590 | square meters | square yards | 1.196 |
| .405 | square kilometers | square miles | .386 |
| .028 | square hectometers | acres | 2.471 |
| .765 | cubic meters | cubic feet | 35.315 |
| 29,573 | cubic meters | cubic yards | 1.308 |
| .473 | milliliters | fluid ounces | .034 |
| .946 | liters | pints | 2.113 |
| 3.785 | liters | quarts | 1.057 |
| 28.349 | liters | gallons | .264 |
| .454 | grams | ounces | .035 |
| .907 | kilograms | pounds | 2.205 |
| 1.356 | metric tons | short tons | 1.102 |
| .11296 |  |  |  |

## Temperature (Exact)

| ${ }^{\circ} \mathrm{F}$ | Fahrenheit | $5 / 9($ after | Celsius | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- | :--- |
|  | temperature | subtracting 32) | temperature |  |

PIN: 012727-000


[^0]:    * This manual supersedes TB 55-13, 30 April 1963.

